Cache Miss Rate Predictability via Neural Networks
Rishikesh Jha, Saket Tiwari, Arjun Kuravally, Eliot Moss. (2018). "Cache Miss Rate Predictability via Neural Networks." NeurIPS 2018 Workshop on ML in Systems
Rishikesh Jha, Saket Tiwari, Arjun Kuravally, Eliot Moss. (2018). "Cache Miss Rate Predictability via Neural Networks." NeurIPS 2018 Workshop on ML in Systems
Saket Tiwari, & Philip Thomas. (2019). "Natural Option Critic." AAAI 2019
Saket Tiwari, & George Konidaris. "Effects of Data Geometry in Early Deep Learning." NeurIPS 2022
Megan M. Baker, Alexander New, Mario Aguilar-Simon, Ziad Al-Halah, Sébastien M. R. Arnold, Ese Ben-Iwhiwhu, Andrew P. Brna, Ethan Brooks, Ryan C. Brown, Zachary Daniels, Anurag Daram, Fabien Delattre, Ryan Dellana, Eric Eaton, Haotian Fu, Kristen Grauman, Jesse Hostetler, Shariq Iqbal, Cassandra Kent, Nicholas Ketz, Soheil Kolouri, George Konidaris, Dhireesha Kudithipudi, Erik Learned-Miller, Seungwon Lee, Michael L. Littman, Sandeep Madireddy, Jorge A. Mendez, Eric Q. Nguyen, Christine D. Piatko, Praveen K. Pilly, Aswin Raghavan, Abrar Rahman, Santhosh Kumar Ramakrishnan, Neale Ratzlaff, Andrea Soltoggio, Peter Stone, Indranil Sur, Zhipeng Tang, Saket Tiwari, Kyle Vedder, Felix Wang, Zifan Xu, Angel Yanguas-Gil, Harel Yedidsion, Shangqun Yu, Gautam K. Vallabha. (2023). "A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems" Neural Networks Volume 160, 2023.
Haotian Fu, Shangqun Yu, Saket Tiwari, Michael Littman, George Konidaris. (2023). "Meta-Learning Parameterized Skills." ICML 2023
Saket Tiwari, Omer Gottesman, & George Konidaris. (2025). "Geometry of Neural Reinforcement Learning in Continuous State and Action Spaces." ICLR 2025